
 

1.1.QSAR identifier (title):

MP: Melting point prediction 

   from the NCCT_Models Suite.

1.2.Other related models:

No related models

1.3.Software coding the model:

NCCT_models V1.02

Suite of QSAR models to predict physicochemical properties and environmental fate of organic

chemicals

Kamel Mansouri (mansouri.kamel@epa.gov; mansourikamel@gmail.com);

https://comptox.epa.gov/dashboard/

 

 

PaDEL descriptors V2.21

Open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap (phayapc@nus.edu.sg)

http://padel.nus.edu.sg/software/padeldescriptor

 

 

MATLAB

MATrix LABoratory is a multi-paradigm numerical computing environment and fourth-generation

programming language

http://www.mathworks.com/company/aboutus/contact_us/?s_tid=gn_cntus

http://www.mathworks.com/products/matlab/

 

2.1.Date of QMRF:

18 April 2016

2.2.QMRF author(s) and contact details:

[1]Kamel Mansouri, ORISE research fellow at National Center for Computational Toxicology

(NCCT), U.S. Environmental Protection Agency, mansouri.kamel@epa.gov;

mansourikamel@gmail.com

[2]Antony Williams, National Center for Computational Toxicology (NCCT), U.S. Environmental

Protection Agency, Williams.Antony@epa.gov 

2.3.Date of QMRF update(s):

2.4.QMRF update(s):

2.5.Model developer(s) and contact details:

Kamel Mansouri, ORISE research fellow at National Center for Computational Toxicology (NCCT),

U.S. Environmental Protection Agency, mansouri.kamel@epa.gov; mansourikamel@gmail.com 

QMRF identifier (JRC Inventory):To be entered by JRC
QMRF Title:MP: Melting point prediction
    from the NCCT_Models Suite.
Printing Date:May 4, 2016

1.QSAR identifier

2.General information



2.6.Date of model development and/or publication:

2016

2.7.Reference(s) to main scientific papers and/or software package:

[1]An Investigation of the Impact of Quality versus Quantity of data on the development of

physicochemical parameter QSAR models. Antony Williams, Kamel Mansouri, Chris Grulke and Ann

Richard

[2]Modeling physicochemical properties and environmental fate of organic chemicals. Kamel

Mansouri, Antony Williams, Chris Grulke, Ann Richard, Richard Judson

[3]PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap. (2011). J. Comput. Chem., 32: 1466–1474. doi:10.1002/jcc.21707

http://onlinelibrary.wiley.com/doi/10.1002/jcc.21707/abstract

[4]A KNIME workflow for chemical structures curation and standardization in QSAR modeling. Kamel

Mansouri, Sherif Farag, Jayaram Kancherla, Regina Politi, Eugene Muratov, Denis Fourches, Ann

Richard, Richard Judson, Alexander Tropsha.

[5]Williams, A., K. Mansouri, A. Richard, AND C. Grulke. The influence of data curation on QSAR

Modeling – examining issues of quality versus quantity of data (SOT). Presented at Society of

Toxicology, New Orleans, LA, March 13 - 17, 2016.

https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311418

[6]Richard, A., C. Grulke, K. Mansouri, R. Judson, AND A. Williams. An Online Prediction Platform to

Support the Environmental Sciences (American Chemical Society). Presented at ACS Spring

Meeting, San Diego, CA, March 13 - 17, 2016.

https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=311655 

2.8.Availability of information about the model:

Non-proprietary suite of QSAR models freely available on the NCCT

chemistry dashboard (https://comptox.epa.gov/dashboard)

and as a standalone application. Training and validation sets are

available for visualization on the dashboard and as SDF files provided

in supporting informationSection 9.3 and

from the paper[ref 2, Section 2.7].

2.9.Availability of another QMRF for exactly the same model:

Not to date

 

3.1.Species:

Not applicable

3.2.Endpoint:

Physicochemical: Melting point 

3.3.Comment on endpoint:

The melting point is the temperature at which a solid becomes a

   liquid at normal atmospheric pressure.

3.4.Endpoint units:

Degrees Celcius

3.5.Dependent variable:

MP

3.6.Experimental protocol:

3.Defining the endpoint - OECD Principle 1



The  exper imen ta l  da ta  i s  downo laded  f rom the  EPI  Su i te  da ta  webpage  (

h t tp : / / esc .sy r res .com/ in te rkow/Ep iSu i teDa ta .h tm) .

This data comes fromPhysProp (The Physical Properties

Database) which is a collection of a wide variety of sources built by

Syracuse Research Corporation (SRC).

3.7.Endpoint data quality and variability:

The original data collected from the PhysProp database(10051 

     chemicals) has undergone a series of processes to curate the

chemical structures and remove duplicates, obvious outliers and

erroneous entries. This procedure also included a consistency check to

ensure only good quality data is used for the development of the QSAR

model(9120 chemicals). 

Then, QSAR-ready structures were generated by standardizing all chemical

structures and removing duplicates, inorganic and metallo-organic

chemicals(8656 chemicals). The descriptions of KNIME workflows

that were developed for the purpose of the cleaning and standardization

of the data are available in the papers[ref 1 and

     ref 4 Section 2.7]. 

The curated outlier-free experimental data(8653 chemicals)was

divided into training and validation sets before the machine learning

and modeling steps.

 

4.1.Type of model:

QSAR model using PaDEL descriptors[ref2 Sect 1.3].

4.2.Explicit algorithm:

Distance weighted k-nearest neighbors (kNN)

This is a refinement of the classical k-NN classification algorithm where the contribution of each of

the k neighbors is weighted according to their distance to the query point, giving greater weight to

closer neighbors.The used distance is the Euclidean distance. kNN is an unambiguous algorithm

that fulfills the transparency requirements of OECD principle 2 with an optimal compromise between

model complexity and performance.

4.3.Descriptors in the model:

[1]SHBd, Unitless, Atom type electrotopological state: Sum of E-States for (strong) hydrogen bond

donors. Hall, L. H., and Kier, L. B. (1995). Electrotopological state indices for atom types: A novel

combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35,

1039-1045; Liu, R., Sun, H., and So, S. S. (2001). Development of quantitative structure-property

relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration.

J Chem Inf Comput Sci 41, 1623-1632.; Gramatica, P., Corradi, M., and Consonni, V. (2000).

Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular

descriptors. Chemosphere 41, 763-777.

[2]nN, Unitless, Atom count: Number of nitrogen atoms.

[3]maxHBd, Unitless, Atom type electrotopological state: Maximum E-States for (strong) Hydrogen

Bond donors.Hall, L. H., and Kier, L. B. (1995). Electrotopological state indices for atom types: A

novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci

35, 1039-1045; Liu, R., Sun, H., and So, S. S. (2001). Development of quantitative structure-

4.Defining the algorithm - OECD Principle 2



property relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier

penetration. J Chem Inf Comput Sci 41, 1623-1632.; Gramatica, P., Corradi, M., and Consonni, V.

(2000). Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by

molecular descriptors. Chemosphere 41, 763-777.

[4]ATSC1v, Unitless, Centered Broto-Moreau autocorrelation - lag 1 / weighted by van der Waals

volumes. Todeschini, R. and Consonni, V. (2009). Molecular descriptors for chemoinformatics,

(Weinheim: Wiley VCH) pg 27-37

[5]AATS1i, Unitless, Average Broto-Moreau autocorrelation - lag 1 / weighted by first ionization

potential. Todeschini, R. and Consonni, V. (2009). Molecular descriptors for chemoinformatics,

(Weinheim: Wiley VCH) pg 27-37

[6]TopoPSA, Unitless, Topological polar surface area.Ertl, P. and Rohde, B. and Selzer, P., Fast

Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its

Application to the Prediction of Drug Transport Properties, J. Med. Chem., 2000, 43:3714-3717

[7]nT6Ring, Unitless, Number of 6-membered rings (includes counts from fused rings)

[8]nHBDon, Unitless, Number of hydrogen bond donors (using CDK HBondDonorCountDescriptor

algorithm)

[9]WTPT-5, Unitless, Weighted path: Sum of path lengths starting from nitrogens. Randic, M. , On

molecular identification numbers , Journal of Chemical Information and Computer Science, 1984,

24:164-175

[10]minHBd, Unitless, Atom type electrotopological state: Minimum E-States for (strong) Hydrogen

Bond donors. Hall, L. H., and Kier, L. B. (1995). Electrotopological state indices for atom types: A

novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci

35, 1039-1045; Liu, R., Sun, H., and So, S. S. (2001). Development of quantitative structure-

property relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier

penetration. J Chem Inf Comput Sci 41, 1623-1632.; Gramatica, P., Corradi, M., and Consonni, V.

(2000). Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by

molecular descriptors. Chemosphere 41, 763-777.

[11]nHBint2, Unitless, Atom type electrotopological state: Count of E-State descriptors of strength for

potential Hydrogen Bonds of path length 2. Hall, L. H., and Kier, L. B. (1995). Electrotopological

state indices for atom types: A novel combination of electronic, topological, and valence state

information. J Chem Inf Comput Sci 35, 1039-1045; Liu, R., Sun, H., and So, S. S. (2001).

Development of quantitative structure-property relationship models for early ADME evaluation in

drug discovery. 2. Blood-brain barrier penetration. J Chem Inf Comput Sci 41, 1623-1632.;

Gramatica, P., Corradi, M., and Consonni, V. (2000). Modelling and prediction of soil sorption

coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere 41, 763-777.

[12]IC0, Unitless, Information content index (neighborhood symmetry of 0-order). Todeschini, R. and

Consonni, V. (2009). Molecular descriptors for chemoinformatics, (Weinheim: Wiley VCH) pg 408-

411.

[13]MLFER_S, Unitless, Molecular linear free energy relation: Combined dipolarity/polarizability.

Platts JA, Butina D, Abraham MH, Hersey A. Estimation of molecular free energy relation descriptors

using a group contribution approach. J Chem Inf Comput Sci. 1999;39(5):835-45.

[14]MLFER_BO, Unitless, Molecular linear free energy relation: Overall or summation solute

hydrogen bond basicity. Platts JA, Butina D, Abraham MH, Hersey A. Estimation of molecular free

energy relation descriptors using a group contribution approach. J Chem Inf Comput Sci.

1999;39(5):835-45.

[15]WTPT-3, Uniotless, Weighted path: Sum of path lengths starting from heteroatoms. Randic, M. ,



On molecular identification numbers , Journal of Chemical Information and Computer Science, 1984,

24:164-175

[16]Salt_info (Optional), Unitless, Identifier for the salt/solvent, if exists. 

4.4.Descriptor selection:

PaDEL software was used to calculate1440 molecular descriptors.

A first filter was applied in order to remove descriptors with missing

values, constant and near constant (standard deviation of0.25 as a

     threshold) and highly correlated descriptors (96% as a threshold).

The remaining903 descriptorswere used in a feature selection

procedure to select a minimum number of variables encoding the most

relevant structural information to the modeled endpoint. This step

consisted of coupling Genetic Algorithms (GA) with the weighted kNN

algorithm and was applied in 5 fold cross validation on the training set(6486

     chemicals). This procedure was run for 200 consecutive independent

runs maximizing Q2in cross-validation and minimizing the

number of descriptors. The number of k neighbors is optimized within the

range of 3 to 7. The descriptors were then ranked based on their

frequency of selection during the GA runs. The best model showed an

optimal compromise between the simplicity (minimum number of

descriptors) and performance (Q2in cross-validation) to

ensure transparency and facilitate the mechanistic interpretation as

required by OECD principles 2 and 5. More details in paper[ref2

     Section 2.7].

4.5.Algorithm and descriptor generation:

PaDEL descriptors were calculated based on two-dimensional (2D) chemical

structures generated by the Indigo cheminformatics suite of tools

implemented in KNIME. 2D descriptors were selected over 3D to avoid

complicated and usually irreproducible geometrical optimizations. The

calculated descriptors fall into different groups such as constitutional

indices, ring descriptors, topological indices, 2D matrix based

descriptors, functional group counts and atom counts. Details and

references providedSection 4.3.

4.6.Software name and version for descriptor generation:

PaDEL-Descriptors V2.21

An open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap (phayapc@nus.edu.sg)

http://padel.nus.edu.sg/software/padeldescriptor

4.7.Chemicals/Descriptors ratio:

6486chemicals (trainingset)/15descriptors=432.4

 

5.1.Description of the applicability domain of the model:

The model is applicable to heterogeneous organic chemicals. In the 

implementation of the model several pieces of information are given to 

help the user in evaluating the reliability of a prediction. The

chemical structure is first assessed to see if it is falling within the 

5.Defining the applicability domain - OECD Principle 3



Applicability Domain of the model or not. Then the accuracy of the

predicted value is reported based on the similarity of the query

chemical to its neighboring chemicals in the training set of the model. 

This fullfills the requirements of the 3rd OECD principle by defining

     the limitations in terms of the types of chemical structures,

     physicochemical properties and mechanisms of action for which the model

     can generate reliable predictions.

5.2.Method used to assess the applicability domain:

The applicability domain of the model is assessed in two independent

levels using two different distance-based methods. First, a global

applicability domain is determined by means of the leverage approach

that checks whether the query structure falls within the

multidimensional chemical space of the whole training set. 

The leverage of a query chemical is proportional to its Mahalanobis

distance measure from the centroid of the training set. The leverages of

a given dataset are obtained from the diagonal values of the hat matrix.

This approach is associated with a threshold leverage that corresponds

to3*p/nwhere p is the number of model variables while n is the

number of training compounds. A query chemical with leverage higher than

the threshold is considered outside the AD and can be associated with

unreliable prediction. 

The leverage approach has its limitations, especially when it comes to

gaps within the descriptor space of the model or at the edges of the

training set. That's why we added a second layer of applicability domain

assessement with a local approach investigating only the vicinity of the

query chemical. Contrary to the first approach that provides only

Boolean answers (yes/no), this local approach provides a continuous

index ranging from 0 to 1. This local AD-index is relative to the

similarity of the query chemical to its 5 nearest neighbors in the p

dimensional space of the model. The higher this index, the more the

prediction is likely to be reliable.

5.3.Software name and version for applicability domain assessment:

Implemented in NCCT_Models Suite V1.02

An implementation of a local similarity index and the leverage approach based on the work of

Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of

Different Approaches to Define the Applicability Domain of QSAR Models. Molecules 2012, 17,

4791-4810.

Kamel Mansouri (mansouri.kamel@epa.gov; mansourikamel@gmail.com);

https://comptox.epa.gov/dashboard/

5.4.Limits of applicability:

These two AD methods described inSection 5.2are complementary and can be interpreted in the

following way: 

- If a chemical is considered outside the global AD with a low local

AD-index, the prediction is more likely to be unreliable 

- If a chemical is considered outside the global AD but the local

AD-index is average or relatively high, this means the query chemical is



on the edge of the training set but has quite similar neighbors. The

prediction can be considered with caution. 

- If a chemical is considered inside the global AD but the local

AD-index is average or relatively low, this means the query chemical

fell in a "gap" of the chemical space of the model but still within the

boudaries of the training set and surrounded with training chemicals.

The prediction should be considered with caution. 

- If a chemical is considered inside the global AD with a high local

AD-index, the prediction can be trusted. 

Even though the applicability domain is necessary to set the limits of

the interpolation space of the model, it doesn't necessarily inform

about the quality of the prediction especially in the empty spaces and

around the edges of the descriptor space. In order to overcome this

limitation and help the user decide about the reliability of a

prediction, we added a confidence level index raging from 0 to 1

relative to the accuracy of prediction of the 5 nearest neighbors to the

query chemical. The higher this index, the more the prediction is likely

to be reliable.

 

6.1.Availability of the training set:

Yes

6.2.Available information for the training set:

Internal ID; CAS checksum; name validity; preferred name; IUPAC name; Original SMILES; QSAR-

ready canonical smiles; InChI; Salt information; DSSTox GSID; Experimental reference; Consistency

flag

CAS RN: Yes

Chemical Name: Yes

Smiles: Yes

Formula: No

INChI: Yes

MOL file: Yes

6.3.Data for each descriptor variable for the training set:

All

6.4.Data for the dependent variable for the training set:

All

6.5.Other information about the training set:

The training set consists of6486 chemicals. The structures are

randomly selected to represent 75% of the available data keeping a

similar normal distrubution of MP vlaues in both training and test sets

using the Venetian blinds method. The values are ranging from ~-196 to

~-437. A plot of the distribution of MP values is provided in the

supporting informationSection 9.3.

6.6.Pre-processing of data before modelling:

No preprocessing of the values.

6.Internal validation - OECD Principle 4



6.7.Statistics for goodness-of-fit:

Performance in training: 

R2=0.74 

RMSE=50.27

6.8.Robustness - Statistics obtained by leave-one-out cross-validation:

6.9.Robustness - Statistics obtained by leave-many-out cross-validation:

Performance in 5-fold cross-validation: 

Q2=0.71 

RMSE=51.8 

A plot of the experimental versus predicted values for the training set

is provided in supporting informationSection 9.3.

6.10.Robustness - Statistics obtained by Y-scrambling:

6.11.Robustness - Statistics obtained by bootstrap:

6.12.Robustness - Statistics obtained by other methods:
 

7.1.Availability of the external validation set:

Yes

7.2.Available information for the external validation set:

Internal ID; CAS checksum; name validity; preferred name; IUPAC name; Original SMILES; QSAR-

ready canonical smiles; InChI; Salt information; DSSTox GSID; Experimental reference; Consistency

flag

CAS RN: Yes

Chemical Name: Yes

Smiles: Yes

Formula: No

INChI: Yes

MOL file: Yes

7.3.Data for each descriptor variable for the external validation set:

All

7.4.Data for the dependent variable for the external validation set:

All

7.5.Other information about the external validation set:

The validation set consists of2167 chemicals. 

The values are ranging from ~-187 to ~492.

7.6.Experimental design of test set:

The structures are randomly selected to represent 25% of the available

data keeping a similar normal distrubution of MP vlaues in both training

and test sets using the Venetian blinds method. A plot of the

distribution of MP values is provided in the supporting informationSection

     9.3.

7.7.Predictivity - Statistics obtained by external validation:

Performance in test: 

R2=0.73 

RMSE=52.72

7.External validation - OECD Principle 4



7.8.Predictivity - Assessment of the external validation set:

The validation set consisting of2167 chemicalswhich is

equivalent to a third (1/3) of the training set is sufficient for the

evaluation of the predictivity of the model and a good representation of

the chemical space as shown in the multi-dimensional scaling plot

provided in supporting informationSection 9.3.

A plot of the experimental versus predicted values for the validation

set is provided in supporting informationSection

     9.3.

7.9.Comments on the external validation of the model:

The choice of proportions between the training set and the validation

set as well as the splitting method helped in accurately evaluating the

model and covering most of the training set chemical space. This goal

was accomplished without the need to do a structural sampling that

usually shows over-optimistic evaluation of the predictivity or a

complete random selection that risks to bias the evaluation towards a

certain region of the chemical space.

 

8.1.Mechanistic basis of the model:

The model descriptors were selected statistically but they can also be

mechanistically interpreted. 

SHBd: Atom type electrotopological state: Sum of E-States for (strong)

hydrogen bond donors. 

nN: Atom count: Number of nitrogen atoms. 

maxHBd: Atom type electrotopological state: Maximum E-States for

(strong) Hydrogen Bond donors. 

ATSC1v: Centered Broto-Moreau autocorrelation - lag 1 / weighted by van

der Waals volumes. 

AATS1i: Average Broto-Moreau autocorrelation - lag 1 / weighted by first

ionization potential. 

TopoPSA: Topological polar surface area. 

nT6Ring: Number of 6-membered rings (includes counts from fused rings) 

nHBDon: Number of hydrogen bond donors (using CDK

HBondDonorCountDescriptor algorithm) 

WTPT-5: Weighted path: Sum of path lengths starting from nitrogens. 

minHBd: Atom type electrotopological state: Minimum E-States for

(strong) Hydrogen Bond donors. 

nHBint2: Atom type electrotopological state: Count of E-State

descriptors of strength for potential Hydrogen Bonds of path length 2. 

IC0: Information content index (neighborhood symmetry of 0-order) 

MLFER_S: Molecular linear free energy relation: Combined

dipolarity/polarizability.MLFER_BO: Molecular linear free energy relation: Overall or summation

solute hydrogen bond basicityWTPT-3: Weighted path: Sum of path lengths starting from

heteroatoms. 

Salt_info (Optional): Identifier for the salt/solvent, if exists.

8.Providing a mechanistic interpretation - OECD Principle 5



8.2.A priori or a posteriori mechanistic interpretation:

A posteriori mechanistic interpretation.

8.3.Other information about the mechanistic interpretation:

For more details and full reference, see references inSection

     4.3andSection 9.2.

 

9.1.Comments:

This QSAR model forMP prediction is part of the NCCT_Models

Suite that is a free and open-source standalone application for the

prediction of physicochemical properties and environmental fate of

chemicals. This application is available in the Supporting informationSection

     9.3of this report and in the paperref 2

     Section 2.7. The detailed results of this suite of models applied

on more than 700k DSSTox chemicals are available on the iCSS chemistry

dashboard (https://comptox.epa.gov/dashboard). 

This current version of the model is mainly based on curated and

standardized data collected from the Physprop database. All NCCT_Models

are designed to fulfil the requirement of the 5 OECD principles to

ensure transparency and reproducibility of the results. In order to

predict new chemicals, the models only require 2D chemical structures

that are used to calculate molecular descriptors by PaDEL 2.21 software.

Then a simple weighted kNN algorithm is used to make the prediction

based on the observed values of the k closest molecules. All models

showed high robustness and statistics stability between training, 5-fold

cross-validation and the external validation set. 

Considering the full applicability domain of the8653 chemicalswith available data and the same

models parameters described earlier,

the calibration statistics would be anR 2 of 0.75 and

anRMSE of 49.63.

9.2.Bibliography:

9.3.Supporting information:

Training set(s)Test set(s)Supporting information
 

10.1.QMRF number:

To be entered by JRC

10.2.Publication date:

To be entered by JRC

10.3.Keywords:

To be entered by JRC

10.4.Comments:

To be entered by JRC

9.Miscellaneous information

10.Summary (JRC QSAR Model Database)
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